By Topic

Spatial Resolution of Bistatic Synthetic Aperture Radar: Impact of Acquisition Geometry on Imaging Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Antonio Moccia ; Dept. of Aerosp. Eng., Univ. degli Studi di Napoli Federico II, Naples, Italy ; Alfredo Renga

This paper analyzes the spatial resolution of bistatic synthetic aperture radar (SAR) in general hybrid configurations, such as air- and spaceborne systems moving along independent trajectories. The gradient method is utilized to point out the effects of the acquisition geometry, namely, position and velocity of both the transmitter and the receiver, on image resolution. This general approach is applied to different realizations of bistatic SAR, such as low-Earth-orbit monostatic-bistatic SAR, spaceborne-airborne bistatic SAR, and a bistatic system consisting of a high-altitude long-endurance illuminator and lower altitude airborne receivers. The main features of the method are then put in evidence, including the derivation of analytical tools to individuate adequate relative geometries for achieving satisfactory resolutions. A comparison to the other proposed techniques for computing the spatial resolution of bistatic SAR is also reported in order to highlight some peculiarities of all presented methodologies. Finally, the good agreement between the image resolution results achieved by recently carried out bistatic SAR experiments and the ones derived by the gradient method strengthens the potentialities of the proposed approach.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:49 ,  Issue: 10 )