By Topic

Sandia frequency shift parameter selection for multi-inverter systems to eliminate non-detection zone

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zeineldin, H.H. ; Masdar Inst. of Sci. & Technol., Abu Dhabi, United Arab Emirates ; Conti, S.

Among frequency drift islanding detection methods, Sandia frequency shift (SFS) is considered as one of the most effective methods in detecting islanding conditions for grid connected photovoltaic (PV) inverters. The performance of the SFS method during an islanding condition and its non-detection zone (NDZ) depends to a great extent on its parameters. Furthermore, the capability of the SFS method to detect an islanding condition deteriorates with multiple PV inverters. A mathematical formula is derived to aid protection engineers in determining the optimal setting of the SFS islanding detection parameters with multiple inverter-based distributed generation (DG), such as PV systems, to eliminate the NDZ. The derived formula is applied to multiple DG systems equipped with the over frequency/under frequency protection, active frequency drift and SFS islanding detection methods and is verified through NDZ analysis and simulation results on PSCAD/EMTDC. The derived formula provides an effective guideline for designing frequency drift methods in multi-inverter-based DG systems.

Published in:

Renewable Power Generation, IET  (Volume:5 ,  Issue: 2 )