By Topic

Recognizing Multiuser Activities Using Wireless Body Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tao Gu ; Dept. of Math. & Comput. Sci., Univ. of Southern Denmark, Odense, Denmark ; Liang Wang ; Hanhua Chen ; Xianping Tao
more authors

The advances of wireless networking and sensor technology open up an interesting opportunity to infer human activities in a smart home environment. Existing work in this paradigm focuses mainly on recognizing activities of single user. In this work, we focus on the fundamental problem of recognizing activities of multiple users using a wireless body sensor network, and propose a scalable pattern mining approach to recognize both single- and multiuser activities in a unified framework. We exploit Emerging Pattern-a discriminative knowledge pattern which describes significant changes among activity classes of data-for building activity models and design a scalable, noise-resistant, Emerging Pattern-based Multiuser Activity Recognizer (epMAR) to recognize both single- and multiuser activities. We develop a multimodal, wireless body sensor network for collecting real-world traces in a smart home environment, and conduct comprehensive empirical studies to evaluate our system. Results show that epMAR outperforms existing schemes in terms of accuracy, scalability, and robustness.

Published in:

IEEE Transactions on Mobile Computing  (Volume:10 ,  Issue: 11 )