By Topic

Communication Optimizations Used in the Paradigm Compiler for Distributed-Memory Multicomputers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The PARADIGM (PARAllelizing compiler for DIstributed-memory General-purpose Multicomputers) project at the University of Illinois provides a fully automated means to parallelize programs, written in a serial programming model, for execution on distributed-memory multicomputers. To provide efficient execution, PARADIGM automatically performs various optimizations to reduce the overhead and idle time caused by interprocessor communication. Optimizations studied in this paper include message coalescing, message vectorization, message aggregation, and coarse gram pipelining. To separate the optimization algorithms from machine-specific details, parameterized models are used to estimate communication and computation costs for a given machine. The models are also used in coarse gram pipelining to automatically select a task granularity that balances the available parallelism with the costs of communication. To determine the applicability of the optimizations on different machines, we analyzed their performance on an Intel iPSC/860, an Intel iPSC/2, and a Thinking Machines CM-5.

Published in:

Parallel Processing, 1994. ICPP 1994 Volume 2. International Conference on  (Volume:2 )

Date of Conference:

15-19 Aug. 1994