By Topic

CIC: an integrated approach to checkpointing in mobile agent systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jin Yang ; Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China ; Jiannong Cao ; Weigang Wu

As a widely used fault tolerance technique, checkpointing has evolved into several schemes: independent, coordinated, and communication-induced (CIC). Independent and coordinated checkpointing have been adopted in many works on fault tolerant mobile agent (MA) systems. However, CIC, a flexible, efficient, and scalable checkpointing scheme, has not been applied to MA systems. Based on the analysis of the behavior of mobile agent, we argue that CIC is a well suited checkpointing scheme for MA systems. CIC not only establishes the consistent recovery lines efficiently but also integrates well with the independent checkpointing for reliable MA migration. Here, we propose an important improvement to CIC, referred to as the deferred message processing based CIC algorithm (DM-CIC), which achieves higher efficiency by exempting the CIC algorithm from making the forced checkpoints in MA systems. Through simulation, we find out that DM-CIC is stable and better suited to large scale MA systems.

Published in:

Semantics, Knowledge and Grid, 2006. SKG '06. Second International Conference on

Date of Conference:

1-3 Nov. 2006