By Topic

Towards Energy-Efficient Algorithm-Based Estimation in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A primary purpose of sensing in a sensor network is to collect and aggregate information about a phenomenon of interest. The batteries on today's wireless sensor barely last a few days, and nodes typically expend a lot of energy in computation and wireless communication. Hence, the energy efficiency of the system is a major issue. Different representative mechanisms has been proposed to achieve a long lived sensors such as “clustering mechanisms” as well as Aggregation techniques to reduce the amount of data communication generated by sensors. Depending on the data type, ARMA series and forecasting are possible ways to reduce data transmission. In this work, we adopt single-hop clustering mechanism where all sensor nodes in a cluster communicate with their Cluster-Head (or sink) via single hop (such as In/On body sensors for personal health monitoring,..). We propose different data aggregation algorithms based on the AutoRegressive model, to predict local readings and reduce the communication traffic. We evaluate the performance of our work in terms of communication cost and energy consumption. We also extend our work to enhance the prediction accuracy by estimating dynamic prediction threshold. Our simulation shows that depending on data type, communication overhead and rate can be reduced and a considerable accuracy prediction can be obtained.

Published in:

Mobile Ad-hoc and Sensor Networks (MSN), 2010 Sixth International Conference on

Date of Conference:

20-22 Dec. 2010