By Topic

High-Frequency Linear Compressor and Lateral Position Regulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nan-Chyuan Tsai ; Dept. of Mech. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chao-Wen Chiang

The mathematical model for the magnetically levitated linear compressor (MLLC), which consists of a magnetic linear actuator (MLA), a pair of active magnetic bearings (AMBs), and a drive rod, is developed. To prevent any potential wear or collision by the drive rod against conventional bearings and certainly reduce noise, the AMB pair is employed to regulate the lateral position deviation of the drive rod. The integral sliding-mode control (ISMC) is synthesized to account for state-dependent system parameters and input nonlinearities for the MLLC system. In addition, the closed-loop stability, under the presence of the reaction force by gas in chamber, is proven by Lyapunov direct method. Finally, the efficacy of the ISMC is verified by intensive computer simulations to ensure its superior regulation capability for lateral position deviation on the drive rod, retention of constant stroke of the piston, and counterbalance against the reaction force by gas during Otto cycle.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 1 )