By Topic

An Experiment on Behavior Generalization and the Emergence of Linguistic Compositionality in Evolving Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Populations of simulated agents controlled by dynamical neural networks are trained by artificial evolution to access linguistic instructions and to execute them by indicating, touching, or moving specific target objects. During training the agent experiences only a subset of all object/action pairs. During postevaluation, some of the successful agents proved to be able to access and execute also linguistic instructions not experienced during training. This owes to the development of a semantic space, grounded in the sensory motor capability of the agent and organized in a systematized way in order to facilitate linguistic compositionality and behavioral generalization. Compositionality seems to be underpinned by a capability of the agents to access and execute the instructions by temporally decomposing their linguistic and behavioral aspects into their constituent parts (i.e., finding the target object and executing the required action). The comparison between two experimental conditions, in one of which the agents are required to ignore rather than to indicate objects, shows that the composition of the behavioral set significantly influences the development of compositional semantic structures.

Published in:

IEEE Transactions on Autonomous Mental Development  (Volume:3 ,  Issue: 2 )