By Topic

GNSS pseudorange error density tracking using Dirichlet Process Mixture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Viandier, N. ; Univ Lille Nord de France, Lille, France ; Marais, J. ; Rabaoui, A. ; Duflos, E.

In satellite navigation system, classical localization algorithms assume that the observation noise is white-Gaussian. This assumption is not correct when the signal is reflected on the surrounding obstacles. That leads to a decrease of accuracy and of continuity of service. To enhance the localization performances, a better observation noise density can be use in an adapted filtering process. This article aims to show how the Dirich-let Process Mixture can be employed to track the observation density on-line. This sequential estimation solution is adapted when the noise is non-stationary. The approach will be tested under a simulation scenario with multiple propagation conditions. Then, this density modeling will be used in Rao-Blackwellised Particle Filter.

Published in:

Information Fusion (FUSION), 2010 13th Conference on

Date of Conference:

26-29 July 2010