Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

A Knowledge-Driven Approach to Activity Recognition in Smart Homes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liming Chen ; Sch. of Comput. & Math., Univ. of Ulster, Newtownabbey, UK ; Nugent, C.D. ; Hui Wang

This paper introduces a knowledge-driven approach to real-time, continuous activity recognition based on multisensor data streams in smart homes. The approach goes beyond the traditional data-centric methods for activity recognition in three ways. First, it makes extensive use of domain knowledge in the life cycle of activity recognition. Second, it uses ontologies for explicit context and activity modeling and representation. Third and finally, it exploits semantic reasoning and classification for activity inferencing, thus enabling both coarse-grained and fine-grained activity recognition. In this paper, we analyze the characteristics of smart homes and Activities of Daily Living (ADL) upon which we built both context and ADL ontologies. We present a generic system architecture for the proposed knowledge-driven approach and describe the underlying ontology-based recognition process. Special emphasis is placed on semantic subsumption reasoning algorithms for activity recognition. The proposed approach has been implemented in a function-rich software system, which was deployed in a smart home research laboratory. We evaluated the proposed approach and the developed system through extensive experiments involving a number of various ADL use scenarios. An average activity recognition rate of 94.44 percent was achieved and the average recognition runtime per recognition operation was measured as 2.5 seconds.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 6 )