By Topic

An Active Damping Method Using Inductor-Current Feedback Control for High-Power PWM Current-Source Rectifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fangrui Liu ; Dept. of Electr. & Comput. Eng., Ryerson Univ., Toronto, ON, Canada ; Bin Wu ; Zargari, N.R. ; Pande, M.

Due to the inductor-capacitor filter, a pulse width modulation current-source rectifier (CSR) may experience LC resonance. A smaller ratio between the switching frequency and the resonant frequency of the CSR presents a challenge in designing active resonance damping methods in high-power applications. In this paper, different feedback states of filter inductor current and capacitor voltage are investigated to damp out the LC resonances. Besides proportional capacitor-voltage feedback (CVF), the derivative inductor-current feedback (ICF) provides an alternative approach for active damping and is comprehensively analyzed. Compared with the virtual-resistance (VR)-based active damping strategy, controller design is simpler in this method. Furthermore, the active damping method is able to damp the resonance under short-circuited dc-link conditions. The ICF-based active damping strategy works well for CSRs with low switching frequencies. Simulation and experimental results verify the feasibility and validity of the method.

Published in:

Power Electronics, IEEE Transactions on  (Volume:26 ,  Issue: 9 )