Cart (Loading....) | Create Account
Close category search window
 

A Novel Semianalytical Approach for Finding Pull-In Voltages of Micro Cantilever Beams Subjected to Electrostatic Loads and Residual Stress Gradients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kuang-Shun Ou ; Dept. of Mech. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Kuo-Shen Chen ; Tian-Shiang Yang ; Sen-Yung Lee

Beam structures are widely used in microelectromechanical systems (MEMS) sensors and actuators, and modeling of pull-in behavior of beams subjected to electrostatic force is essential for MEMS actuators. However, from a fabrication perspective, MEMS microbeams are usually curled due to residual stress gradients, and this causes difficulties to accurately estimate the pull-in voltages. As a result, the characteristics of microbeams subjected to both residual stress gradients and electrostatic forces must be investigated to provide accurate information for the design of sensors and actuators. In this paper, a novel semianalytical formulation for computing the pull-in voltage of a curled cantilever beam due to residual stress gradients is proposed. By assuming an admissible deformation shape and using the energy method to determine the coefficients of the shape functions, it is possible to find the pull-in characteristics of the curled cantilevers. Detailed parametric studies are subsequently performed to quantify the influence of various geometry and processing parameters on the pull-in characteristics of those microbeams. Finally, we present a fitted formula for MEMS engineers to estimate pull-in voltages for beams with residual stress gradients for design optimization. The proposed method can also be extended for handling bilayered curled cantilever beams due to thermomechanical mismatches. Therefore, the method and results presented in this paper should be useful in micro sensor and actuator design.

Published in:

Microelectromechanical Systems, Journal of  (Volume:20 ,  Issue: 2 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.