Cart (Loading....) | Create Account
Close category search window
 

High-Efficiency Processing Schedule for Parallel Turbo Decoders Using QPP Interleaver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng-Chi Wong ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chang, Hsie-Chia

This paper presents a high-efficiency parallel architecture for a turbo decoder using a quadratic permutation polynomial (QPP) interleaver. Conventionally, two half-iterations for different component codewords alternate during the decoding flow. Due to the initialization calculation and pipeline delays in every half-iteration, the functional units in turbo decoders will be idle for several cycles. This inactive period will degrade throughput, especially for small blocks or high parallelism. To resolve this issue, we impose several constraints on the QPP interleaver and rearrange the processing schedule; then the following half-iteration can be executed before the completion of the current half-iteration. Thus, it can eliminate the idle cycles and increase the efficiency of functional units. Based on this modified schedule with 100% efficiency, a parallel turbo decoder which contains 32 radix-24 SISO decoders is implemented with 90 nm technology to achieve 1.4 Gb/s while decoding size-4096 blocks for 8 iterations.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 6 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.