By Topic

Multiple branch and block prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Wallace ; Dept. of Electr. & Comput. Eng., California Univ., Irvine, CA, USA ; N. Bagherzadeh

Accurate branch prediction and instruction fetch prediction of a microprocessor are critical to achieve high performance. For a processor which fetches and executes multiple instructions per cycle, an accurate and high bandwidth instruction fetching mechanism becomes increasingly important to performance. Unfortunately, the relatively small basic block size exhibited in many general-purpose applications severely limits instruction fetching. In order to achieve a high fetching rate for wide-issue superscalars, a scalable method to predict multiple branches per block of sequential instructions is presented. Its accuracy is equivalent to a scalar two-level adaptive prediction. Also, to overcome the limitation imposed by control transfers, a scalable method to predict multiple blocks is presented. As a result, a two black, multiple branch prediction mechanism for a block width of 8 instructions achieves an effective fetching rate of 8 instructions per cycle on the SPEC95 benchmark suite

Published in:

High-Performance Computer Architecture, 1997., Third International Symposium on

Date of Conference:

1-5 Feb 1997