By Topic

Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kudekar, S. ; Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Richardson, T.J. ; Urbanke, R.L.

Convolutional low-density parity-check (LDPC) ensembles, introduced by Felström and Zigangirov, have excellent thresholds and these thresholds are rapidly increasing functions of the average degree. Several variations on the basic theme have been proposed to date, all of which share the good performance characteristics of convolutional LDPC ensembles. We describe the fundamental mechanism that explains why “convolutional-like” or “spatially coupled” codes perform so well. In essence, the spatial coupling of individual codes increases the belief-propagation (BP) threshold of the new ensemble to its maximum possible value, namely the maximum a posteriori (MAP) threshold of the underlying ensemble. For this reason, we call this phenomenon “threshold saturation.” This gives an entirely new way of approaching capacity. One significant advantage of this construction is that one can create capacity-approaching ensembles with an error correcting radius that is increasing in the blocklength. Although we prove the “threshold saturation” only for a specific ensemble and for the binary erasure channel (BEC), empirically the phenomenon occurs for a wide class of ensembles and channels. More generally, we conjecture that for a large range of graphical systems a similar saturation of the “dynamical” threshold occurs once individual components are coupled sufficiently strongly. This might give rise to improved algorithms and new techniques for analysis.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 2 )