By Topic

Finding Local Anomalies in Very High Dimensional Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
de Vries, T. ; Sch. of Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia ; Chawla, S. ; Houle, M.E.

Time, cost and energy efficiency are critical factors for many data analysis techniques when the size and dimensionality of data is very large. We investigate the use of Local Outlier Factor (LOF) for data of this type, providing a motivating example from real world data. We propose Projection-Indexed Nearest-Neighbours (PINN), a novel technique that exploits extended nearest neighbour sets in the a reduced dimensional space to create an accurate approximation for k-nearest-neighbour distances, which is used as the core density measurement within LOF. The reduced dimensionality allows for efficient sub-quadratic indexing in the number of items in the data set, where previously only quadratic performance was possible. A detailed theoretical analysis of Random Projection(RP) and PINN shows that we are able to preserve the density of the intrinsic manifold of the data set after projection. Experimental results show that PINN outperforms the standard projection methods RP and PCA when measuring LOF for many high-dimensional real-world data sets of up to 300000 elements and 102600 dimensions.

Published in:

Data Mining (ICDM), 2010 IEEE 10th International Conference on

Date of Conference:

13-17 Dec. 2010