By Topic

Scalable Influence Maximization in Social Networks under the Linear Threshold Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Chen ; Microsoft Res. Asia, Beijing, China ; Yifei Yuan ; Li Zhang

Influence maximization is the problem of finding a small set of most influential nodes in a social network so that their aggregated influence in the network is maximized. In this paper, we study influence maximization in the linear threshold model, one of the important models formalizing the behavior of influence propagation in social networks. We first show that computing exact influence in general networks in the linear threshold model is #P-hard, which closes an open problem left in the seminal work on influence maximization by Kempe, Kleinberg, and Tardos, 2003. As a contrast, we show that computing influence in directed a cyclic graphs (DAGs) can be done in time linear to the size of the graphs. Based on the fast computation in DAGs, we propose the first scalable influence maximization algorithm tailored for the linear threshold model. We conduct extensive simulations to show that our algorithm is scalable to networks with millions of nodes and edges, is orders of magnitude faster than the greedy approximation algorithm proposed by Kempe et al. and its optimized versions, and performs consistently among the best algorithms while other heuristic algorithms not design specifically for the linear threshold model have unstable performances on different real-world networks.

Published in:

Data Mining (ICDM), 2010 IEEE 10th International Conference on

Date of Conference:

13-17 Dec. 2010