By Topic

Comparison of Persistent Scatterers and Small Baseline Time-Series InSAR Results: A Case Study of the San Francisco Bay Area

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shanker, P. ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Casu, F. ; Zebker, H.A. ; Lanari, R.

Time-series interferometric synthetic aperture radar (InSAR) methods estimate the spatiotemporal evolution of deformation over large areas by incorporating information from multiple SAR interferograms. Persistent scatterer (PS) and small baseline (SB) methods, which identify areas where the surface is least affected by geometric and temporal decorrelation, represent two families of time-series InSAR techniques to study successfully a wide spectrum of ground deformation phenomena worldwide. However, little is known comparatively about the performance of PS and SB techniques applied to the same region. Here, we compare quantitatively and cross validate the time-series InSAR results generated using two representative algorithms-the maximum likelihood PS method and the small baseline subset algorithm-in selected test sites, over the San Francisco Bay Area imaged by European Remote Sensing (ERS) sensors during 1995-2000. We present line of sight (LOS) velocities and deformation time series using both techniques and show that the root mean squared differences of the estimated mean velocities and deformation from each method are about 1 mm/year and 5 mm, respectively. These values are within expected noise levels and a characteristic of the pixel selection parameters for both the time-series techniques. We validate our deformation estimates against creep measurements from alignment arrays along the Hayward Fault and show that our estimates agree to within 0.5 mm/year LOS velocity and 1.5 mm LOS displacement.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:8 ,  Issue: 4 )