By Topic

Minimum classification error rate methods for speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Biing-Hwang Juang ; Bell Labs., Lucent Technol., Murray Hill, NJ, USA ; Wu Hou ; Chin-Hui Lee

A critical component in the pattern matching approach to speech recognition is the training algorithm, which aims at producing typical (reference) patterns or models for accurate pattern comparison. In this paper, we discuss the issue of speech recognizer training from a broad perspective with root in the classical Bayes decision theory. We differentiate the method of classifier design by way of distribution estimation and the discriminative method of minimizing classification error rate based on the fact that in many realistic applications, such as speech recognition, the real signal distribution form is rarely known precisely. We argue that traditional methods relying on distribution estimation are suboptimal when the assumed distribution form is not the true one, and that “optimality” in distribution estimation does not automatically translate into “optimality” in classifier design. We compare the two different methods in the context of hidden Markov modeling for speech recognition. We show the superiority of the minimum classification error (MCE) method over the distribution estimation method by providing the results of several key speech recognition experiments. In general, the MCE method provides a significant reduction of recognition error rate

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:5 ,  Issue: 3 )