By Topic

Power Management of Inverter Interfaced Autonomous Microgrid Based on Virtual Frequency-Voltage Frame

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yan Li ; Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada ; Yun Wei Li

This paper presents the power management scheme for a power electronics based low voltage microgrid in islanding operation. The proposed real and reactive power control is based on the virtual frequency and voltage frame, which can effectively decouple the real and reactive power flows and improve the system transient and stability performance. Detailed analysis of the virtual frame operation range is presented, and a control strategy to guarantee that the microgrid can be operated within the predetermined voltage and frequency variation limits is also proposed. Moreover, a reactive power control with adaptive voltage droop method is proposed, which automatically updates the maximum reactive power limit of a DG unit based on its current rating and actual real power output and features enlarged power output range and further improved system stability. Both simulation and experimental results are provided in this paper.

Published in:

IEEE Transactions on Smart Grid  (Volume:2 ,  Issue: 1 )