Cart (Loading....) | Create Account
Close category search window
 

3-D Active Meshes: Fast Discrete Deformable Models for Cell Tracking in 3-D Time-Lapse Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dufour, A. ; Quantitative Image Anal. Unit, Inst. Pasteur, Paris, France ; Thibeaux, R. ; Labruyere, E. ; Guillen, N.
more authors

Variational deformable models have proven over the past decades a high efficiency for segmentation and tracking in 2-D sequences. Yet, their application to 3-D time-lapse images has been hampered by discretization issues, heavy computational loads and lack of proper user visualization and interaction, limiting their use for routine analysis of large data-sets. We propose here to address these limitations by reformulating the problem entirely in the discrete domain using 3-D active meshes, which express a surface as a discrete triangular mesh, and minimize the energy functional accordingly. By performing computations in the discrete domain, computational costs are drastically reduced, whilst the mesh formalism allows to benefit from real-time 3-D rendering and other GPU-based optimizations. Performance evaluations on both simulated and real biological data sets show that this novel framework outperforms current state-of-the-art methods, constituting a light and fast alternative to traditional variational models for segmentation and tracking applications.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.