By Topic

Developing ZigBee Deployment Guideline Under WiFi Interference for Smart Grid Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peizhong Yi ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Iwayemi, A. ; Chi Zhou

Smart grid is an intelligent power generation, distribution, and control system. ZigBee, as a wireless mesh networking scheme low in cost, power, data rate, and complexity, is ideal for smart grid applications, e.g., real-time system monitoring, load control, and building automation. Unfortunately, almost all ZigBee channels overlap with wireless local area network (WLAN) channels, resulting in severe performance degradation due to interference. In this paper, we aim to develop practical ZigBee deployment guideline under the interference of WLAN. We identify the “Safe Distance” and “Safe Offset Frequency” using a comprehensive approach including theoretical analysis, software simulation, and empirical measurement. In addition, we propose a frequency agility-based interference avoidance algorithm. The proposed algorithm can detect interference and adaptively switch nodes to “safe” channel to dynamically avoid WLAN interference with small latency and small energy consumption. Our proposed scheme is implemented with a Meshnetics ZigBit Development Kit and its performance is empirically evaluated in terms of the packet error rate (PER) using a ZigBee and Wi-Fi coexistence test bed. It is shown that the empirical results agree with our analytical results. The measurements demonstrate that our design guideline can efficiently mitigate the effect of WiFi interference and enhance the performance of ZigBee networks.

Published in:

Smart Grid, IEEE Transactions on  (Volume:2 ,  Issue: 1 )