By Topic

Entropy-Balanced Bitmap Tree for Shape-Based Object Retrieval From Large-Scale Satellite Imagery Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Grant J. Scott ; Center for Geospatial Intelligence, University of Missouri, Columbia , MO, USA ; Matthew N. Klaric ; Curt H. Davis ; Chi-Ren Shyu

In this paper, we present a novel indexing structure that was developed to efficiently and accurately perform content-based shape retrieval of objects from a large-scale satellite imagery database. Our geospatial information retrieval and indexing system, GeoIRIS, contains 45 GB of high-resolution satellite imagery. Objects of multiple scales are automatically extracted from satellite imagery and then encoded into a bitmap shape representation. This shape encoding compresses the total size of the shape descriptors to approximately 0.34% of the imagery database size. We have developed the entropy-balanced bitmap (EBB) tree, which exploits the probabilistic nature of bit values in automatically derived shape classes. The efficiency of the shape representation coupled with the EBB tree allows us to index approximately 1.3 million objects for fast content-based retrieval of objects by shape.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:49 ,  Issue: 5 )