By Topic

Modeling of Electromagnetic Interference and PLC Transmission for Loads Shedding in a Microgrid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guezgouz, D. ; Lab. de Micro-Electron. de Puissance (LMP), Univ. of Tours, Tours, France ; Chariag, D.E. ; Raingeaud, Y. ; Le Bunetel, J.-C.

This paper presents an electric line study of microgrid. To optimize the management of electric sources, generally a proposed solution is the load shedding. To achieve it, the power line communication (PLC) is often used to communicate when it is not possible to add cables. Such technologies use the power line network as a propagation and communication medium. The network quality depends mainly on the power grid topology, but also on the connected household electrical appliances that have a large impact on the PLC systems due to their impedances and noise. In this paper, we propose a new simulation program with integrated circuit emphasis (SPICE) approach for modeling both the electromagnetic (EM) disturbances generated by a printer and the power network. First, the high-frequency power cable characteristics are extracted from S parameter measurements. Then, the model of EM noise generated by a printer is deduced from time-domain measurement and integrated to the SPICE simulator by means of its Laplace transform. Simulation and modeling results of a simple power grid are given in terms of insertion loss evaluation (S21 parameter). A validation of the EM noise model is performed by means of a comparison between simulation and measurement results in frequency domain at several points of a simple power network. The present approach allows the prediction of EM interference generated by all household devices at any access points of a power line network without carrying out a systematic measurement.

Published in:

Power Electronics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )