By Topic

Fast Rule Identification and Neighborhood Selection for Cellular Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xianfang Sun ; Sch. of Comput. Sci. & Inf., Cardiff Univ., Cardiff, UK ; Rosin, P.L. ; Martin, R.R.

Cellular automata (CA) with given evolution rules have been widely investigated, but the inverse problem of extracting CA rules from observed data is less studied. Current CA rule extraction approaches are both time consuming and inefficient when selecting neighborhoods. We give a novel approach to identifying CA rules from observed data and selecting CA neighborhoods based on the identified CA model. Our identification algorithm uses a model linear in its parameters and gives a unified framework for representing the identification problem for both deterministic and probabilistic CA. Parameters are estimated based on a minimum variance criterion. An incremental procedure is applied during CA identification to select an initial coarse neighborhood. Redundant cells in the neighborhood are then removed based on parameter estimates, and the neighborhood size is determined using the Bayesian information criterion. Experimental results show the effectiveness of our algorithm and that it outperforms other leading CA identification algorithms.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 3 )