By Topic

Scalable Tile Communication-Avoiding QR Factorization on Multicore Cluster Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fengguang Song ; EECS, Univ. of Tennessee, Knoxville, TN, USA ; Ltaief, H. ; Hadri, B. ; Dongarra, J.

As tile linear algebra algorithms continue achieving high performance on shared-memory multicore architectures, it is a challenging task to make them scalable on distributed-memory multicore cluster machines. The main contribution of this paper is the extension to the distributed-memory environment of the previous work done by Hadri et al. on Communication- Avoiding QR (CA-QR) factorizations for tall and skinny matrices (initially done on shared-memory multicore systems). The fine granularity of tile algorithms associated with communicationavoiding techniques for the QR factorization presents a high degree of parallelism where multiple tasks can be concurrently executed, computation and communication largely overlapped, and computation steps fully pipelined. A decentralized dynamic scheduler has then been integrated as a runtime system to efficiently schedule tasks across the distributed resources. Our experimental results performed on two clusters (with dual-core and 8-core nodes, respectively) and a Cray XT5 system with 12-core nodes show that the tile CA-QR factorization is able to outperform the de facto ScaLAPACK library by up to 4 times for tall and skinny matrices, and has good scalability on up to 3,072 cores.

Published in:

High Performance Computing, Networking, Storage and Analysis (SC), 2010 International Conference for

Date of Conference:

13-19 Nov. 2010