Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An 80-Fold Speedup, 15.0 TFlops Full GPU Acceleration of Non-Hydrostatic Weather Model ASUCA Production Code

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Shimokawabe, T. ; Tokyo Inst. of Technol., Tokyo, Japan ; Aoki, T. ; Muroi, C. ; Ishida, J.
more authors

Regional weather forecasting demands fast simulation over fine-grained grids, resulting in extremely memory- bottlenecked computation, a difficult problem on conventional supercomputers. Early work on accelerating mainstream weather code WRF using GPUs with their high memory performance, however, resulted in only minor speedup due to partial GPU porting of the huge code. Our full CUDA porting of the high- resolution weather prediction model ASUCA is the first such one we know to date; ASUCA is a next-generation, production weather code developed by the Japan Meteorological Agency, similar to WRF in the underlying physics (non-hydrostatic model). Benchmark on the 528 (NVIDIA GT200 Tesla) GPU TSUBAME Supercomputer at the Tokyo Institute of Technology demonstrated over 80-fold speedup and good weak scaling achieving 15.0 TFlops in single precision for 6956 x 6052 x 48 mesh. Further benchmarks on TSUBAME 2.0, which will embody over 4000 NVIDIA Fermi GPUs and deployed in October 2010, will be presented.

Published in:

High Performance Computing, Networking, Storage and Analysis (SC), 2010 International Conference for

Date of Conference:

13-19 Nov. 2010