By Topic

3.5-D Blocking Optimization for Stencil Computations on Modern CPUs and GPUs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Stencil computation sweeps over a spatial grid over multiple time steps to perform nearest-neighbor computations. The bandwidth-to-compute requirement for a large class of stencil kernels is very high, and their performance is bound by the available memory bandwidth. Since memory bandwidth grows slower than compute, the performance of stencil kernels will not scale with increasing compute density. We present a novel 3.5D-blocking algorithm that performs 2.5D-spatial and temporal blocking of the input grid into on-chip memory for both CPUs and GPUs. The resultant algorithm is amenable to both thread- level and data-level parallelism, and scales near-linearly with the SIMD width and multiple-cores. Our performance numbers are faster or comparable to state-of-the-art-stencil implementations on CPUs and GPUs. Our implementation of 7-point-stencil is 1.5X-faster on CPUs, and 1.8X faster on GPUs for single- precision floating point inputs than previously reported numbers. For Lattice Boltzmann methods, the corresponding speedup number on CPUs is 2.1X.

Published in:

High Performance Computing, Networking, Storage and Analysis (SC), 2010 International Conference for

Date of Conference:

13-19 Nov. 2010