By Topic

Closing the sensorimotor loop: Haptic feedback facilitates decoding of arm movement imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
M. Gomez-Rodriguez ; Department of Electrical Engineering, Stanford University, CA, USA ; J. Peters ; J. Hill ; B. Schölkopf
more authors

Brain-Computer Interfaces (BCIs) in combination with robot-assisted physical therapy may become a valuable tool for neurorehabilitation of patients with severe hemiparetic syndromes due to cerebrovascular brain damage (stroke) and other neurological conditions. A key aspect of this approach is reestablishing the disrupted sensorimotor feedback loop, i.e., determining the intended movement using a BCI and helping a human with impaired motor function to move the arm using a robot. It has not been studied yet, however, how artificially closing the sensorimotor feedback loop affects the BCI decoding performance. In this article, we investigate this issue in six healthy subjects, and present evidence that haptic feedback facilitates the decoding of arm movement intention. The results provide evidence of the feasibility of future rehabilitative efforts combining robot-assisted physical therapy with BCIs. Moreover, the results suggest that shared-control strategies in Brain-Machine Interfaces (BMIs) may benefit from haptic feedback.

Published in:

Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on

Date of Conference:

10-13 Oct. 2010