By Topic

Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Euler ; Queens University of Belfast, UK ; V. Fusco ; R. Cahill ; R. Dickie

This study presents the use of periodic arrays of freestanding slot frequency-selective screens (FSS) as a means for generating circularly polarised signals from an incident linearly polarised signal at normal incidence to the structure. Measured and simulated results for crossed, linear and various ring slot element shapes in single and double-layer polarisation convertor structures are presented for 10 GHz operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one-layer perforated screen design and that the rate of change is lower than the double-layer structures. An insertion loss of 0.34 dB can be achieved for the split circular ring double-layer periodic array, and of the three topologies presented the hexagonal split-ring polarisation convertor gives the lowest variation of AR with angle of incidence 1.8 dB/45° and 3.6 dB/45° for the single and double-screen FSS, respectively. In addition, their tolerance to angle of incidence variation is presented. The capability of the surfaces reported here as twist polariser or spatial isolator components has been demonstrated with up to -30 dB isolation between incident and re-reflected signals for the double-layer designs being measured.

Published in:

IET Microwaves, Antennas & Propagation  (Volume:4 ,  Issue: 11 )