Cart (Loading....) | Create Account
Close category search window
 

Conservative Power Theory, a Framework to Approach Control and Accountability Issues in Smart Microgrids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tenti, P. ; Dept. of Inf. Eng., Univ. of Padova, Padova, Italy ; Paredes, H.K.M. ; Mattavelli, P.

Smart microgrids offer a new challenging domain for power theories and compensation techniques, because they include a variety of intermittent power sources, which can have dynamic impact on power flow, voltage regulation, and distribution losses. When operating in the islanded mode, low-voltage smart microgrids can also exhibit considerable variation of amplitude and frequency of the voltage supplied to the loads, thus affecting power quality and network stability. Due to limited power capability in smart microgrids, the voltage distortion can also get worse, affecting measurement accuracy, and possibly causing tripping of protections. In such context, a reconsideration of power theories is required, since they form the basis for supply and load characterization, and accountability. A revision of control techniques for harmonic and reactive compensators is also required, because they operate in a strongly interconnected environment and must perform cooperatively to face system dynamics, ensure power quality, and limit distribution losses. This paper shows that the conservative power theory provides a suitable background to cope with smart microgrids characterization needs, and a platform for the development of cooperative control techniques for distributed switching power processors and static reactive compensators.

Published in:

Power Electronics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.