Cart (Loading....) | Create Account
Close category search window
 

Coordinated Beamforming for MISO Interference Channel: Complexity Analysis and Efficient Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ya-Feng Liu ; State Key Lab. of Sci. & Eng. Comput., Chinese Acad. of Sci., Beijing, China ; Yu-Hong Dai ; Zhi-Quan Luo

In a cellular wireless system, users located at cell edges often suffer significant out-of-cell interference. Assuming each base station is equipped with multiple antennas, we can model this scenario as a multiple-input single-output (MISO) interference channel. In this paper we consider a coordinated beamforming approach whereby multiple base stations jointly optimize their downlink beamforming vectors in order to simultaneously improve the data rates of a given group of cell edge users. Assuming perfect channel knowledge, we formulate this problem as the maximization of a system utility (which balances user fairness and average user rates), subject to individual power constraints at each base station. We show that, for the single-carrier case and when the number of antennas at each base station is at least two, the optimal coordinated beamforming problem is NP-hard for both the harmonic mean utility and the proportional fairness utility. For general utilities, we propose a cyclic coordinate descent algorithm, which enables each transmitter to update its beamformer locally with limited information exchange and establish its global convergence to a stationary point. We illustrate its effectiveness in computer simulations by using the space matched beamformer as the benchmark.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.