By Topic

A focus-of-attention preprocessing scheme for EM-ML PET reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Gregor ; Dept. of Comput. Sci., Tennessee Univ., Knoxville, TN, USA ; D. A. Huff

The expectation-maximization maximum-likelihood (EM-ML) algorithm belongs to a family of algorithms that compute positron emission tomography (PET) reconstructions by iteratively solving a large linear system of equations. The authors describe a preprocessing scheme for automatically focusing the attention, and thus the computational resources, on a subset of the equations and unknowns. Experimental work with a CM-5 parallel computer implementation using a simulated phantom as well as real data obtained from an ECAT 921 PET scanner indicates that quite significant savings can be obtained with respect to both time and space requirements of the EM-ML algorithm without compromising the quality of the reconstructed images.

Published in:

IEEE Transactions on Medical Imaging  (Volume:16 ,  Issue: 2 )