By Topic

A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
W. Zhu ; Dept. of Electr. Eng., Polytech. Univ., Brooklyn, NY, USA ; Y. Wang ; Y. Deng ; Y. Yao
more authors

The authors present a wavelet-based multigrid approach to solve the perturbation equation encountered in optical tomography. With this scheme, the unknown image, the data, as well as the weight matrix are all represented by wavelet expansions, thus yielding a multiresolution representation of the original perturbation equation in the wavelet domain. This transformed equation is then solved using a multigrid scheme, by which an increasing portion of wavelet coefficients of the unknown image are solved in successive approximations. One can also quickly identify regions of interest (ROI's) from a coarse level reconstruction and restrict the reconstruction in the following fine resolutions to those regions. At each resolution level a regularized least squares solution is obtained using the conjugate gradient descent method. This approach has been applied to continuous wave data calculated based on the diffusion approximation of several two-dimensional (2-D) test media. Compared to a previously reported one grid algorithm, the multigrid method requires substantially shorter computation time under the same reconstruction quality criterion.

Published in:

IEEE Transactions on Medical Imaging  (Volume:16 ,  Issue: 2 )