By Topic

Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. A. Fessler ; Michigan Univ., Ann Arbor, MI, USA ; E. P. Ficaro ; N. H. Clinthorne ; K. Lange

Presents a new class of algorithms for penalized-likelihood reconstruction of attenuation maps from low-count transmission scans. We derive the algorithms by applying to the transmission log-likelihood a version of the convexity technique developed by De Pierro for emission tomography. The new class includes the single-coordinate ascent (SCA) algorithm and Lange's convex algorithm for transmission tomography as special cases. The new grouped-coordinate ascent (GCA) algorithms in the class overcome several limitations associated with previous algorithms. (1) Fewer exponentiations are required than in the transmission maximum likelihood-expectation maximization (ML-EM) algorithm or in the SCA algorithm. (2) The algorithms intrinsically accommodate nonnegativity constraints, unlike many gradient-based methods. (3) The algorithms are easily parallelizable, unlike the SCA algorithm and perhaps line-search algorithms. We show that the GCA algorithms converge faster than the SCA algorithm, even on conventional workstations. An example from a low-count positron emission tomography (PET) transmission scan illustrates the method.

Published in:

IEEE Transactions on Medical Imaging  (Volume:16 ,  Issue: 2 )