By Topic

Ultra Sensitive Fiber-Optic Hydrogen Sensor Based on High Order Cladding Mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Young Ho Kim ; Gwangju Inst. of Sci. & Technol., Gwangju, South Korea ; Myoung Jin Kim ; Byung Sup Rho ; Min-Su Park
more authors

We demonstrate a simple but sensitive hydrogen gas sensor composed of a palladium-coated long-period fiber grating (LPG). By writing an LPG in a low core index fiber, high-order cladding modes are excited. As the palladium thin layer absorbs hydrogen, the effective refractive indexes of the cladding modes are affected, thus the resonant wavelengths of the LPG are changed with a high sensitivity. With 70-nm-thick coating, 7.5 nm of the hydrogen-induced spectral shift was achieved. The spectral response of the proposed sensor to hydrogen gas and its recovery with nitrogen gas are presented.

Published in:

Sensors Journal, IEEE  (Volume:11 ,  Issue: 6 )