By Topic

Simulating LTE Cellular Systems: An Open-Source Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Piro, G. ; Dipt. di Elettrotec. ed Elettron., Politec. di Bari, Bari, Italy ; Grieco, L.A. ; Boggia, G. ; Capozzi, F.
more authors

Long-term evolution (LTE) represents an emerging and promising technology for providing broadband ubiquitous Internet access. For this reason, several research groups are trying to optimize its performance. Unfortunately, at present, to the best of our knowledge, no open-source simulation platforms, which the scientific community can use to evaluate the performance of the entire LTE system, are freely available. The lack of a common reference simulator does not help the work of researchers and poses limitations on the comparison of results claimed by different research groups. To bridge this gap, herein, the open-source framework LTE-Sim is presented to provide a complete performance verification of LTE networks. LTE-Sim has been conceived to simulate uplink and downlink scheduling strategies in multicell/multiuser environments, taking into account user mobility, radio resource optimization, frequency reuse techniques, the adaptive modulation and coding module, and other aspects that are very relevant to the industrial and scientific communities. The effectiveness of the proposed simulator has been tested and verified considering 1) the software scalability test, which analyzes both memory and simulation time requirements; and 2) the performance evaluation of a realistic LTE network providing a comparison among well-known scheduling strategies.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 2 )