By Topic

Quantitative Emergence -- A Refined Approach Based on Divergence Measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fisch, D. ; Computationally Intell. Syst. Lab., Univ. of Passau, Passau, Germany ; Jänicke, M. ; Sick, B. ; Müller-Schloer, C.

The article addresses the phenomenon of emergence from a technical viewpoint. A technical system exhibits emergence when it has certain kinds of properties or qualities that are irreducible in the sense that they are not traceable to the constituent parts of the system. In particular, we show how emergence in technical systems can be detected and measured gradually using techniques from the field of probability theory and information theory. To detect or measure emergence we observe the system and extract characteristic attributes from those observations. As an extension of earlier work in the field, we propose emergence measures that are well-suited for continuous attributes (or hybrid attribute sets) using either non-parametric or model-based probability density estimation techniques. We also replace the known entropy-based emergence measures by divergence measures for probability densities (e.g., the Kullback-Leibler divergence or the Hellinger distance). We discuss advantages and drawbacks of these measures by means of some simulation experiments using artificial data sets and a real-world data set from the field of intrusion detection.

Published in:

Self-Adaptive and Self-Organizing Systems (SASO), 2010 4th IEEE International Conference on

Date of Conference:

Sept. 27 2010-Oct. 1 2010