By Topic

Support Vector Machine Active Learning Through Significance Space Construction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pasolli, E. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy ; Melgani, F. ; Bazi, Y.

Active learning is showing to be a useful approach to improve the efficiency of the classification process for remote sensing images. This letter introduces a new active learning strategy specifically developed for support vector machine (SVM) classification. It relies on the idea of the following: 1) reformulating the original classification problem into a new problem where it is needed to discriminate between significant and nonsignificant samples, according to a concept of significance which is proper to the SVM theory; and 2) constructing the corresponding significance space to suitably guide the selection of the samples potentially useful to better deal with the original classification problem. Experiments were conducted on both multi- and hyperspectral images. Results show interesting advantages of the proposed method in terms of convergence speed, stability, and sparseness.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:8 ,  Issue: 3 )