By Topic

On Information Divergence Measures and a Unified Typicality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Siu-Wai Ho ; Inst. for Telecommun. Res., Univ. of South Australia, Adelaide, SA, Australia ; Yeung, R.W.

Strong typicality, which is more powerful for theorem proving than weak typicality, can be applied to finite alphabets only, while weak typicality can be applied to countable alphabets. In this paper, the relation between typicality and information divergence measures is discussed. The new definition of information divergence measure in this paper leads to the definition of a unified typicality for finite or countably infinite alphabets which is stronger than both weak typicality and strong typicality. Unified typicality retains the asymptotic equipartition property and the structural properties of strong typicality, and it can potentially be used to generalize those theorems which are previously established by strong typicality to countable alphabets. The applications in rate-distortion theory and multisource network coding problems are discussed.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 12 )