Cart (Loading....) | Create Account
Close category search window
 

A Modified Artificial Neural Network Learning Algorithm for Imbalanced Data Set Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Adam, A. ; Univ. Teknol. Malaysia, Malaysia ; Shapiai, I. ; Ibrahim, Z. ; Khalid, M.
more authors

A modified learning algorithm of Artificial Neural Networks (ANN) is introduced in this paper to solve imbalanced data set problems. In solving imbalanced data set, it is critical to predict the minority class due to their imbalanced nature. In order to improve the standard ANN classifier prediction performance, this paper focuses on optimizing the decision boundary of the step function at the output layer of ANN using particle swarm optimization (PSO). A feedforward ANN is chosen in this study. Firstly, a conventional back propagation algorithm is employed to train the ANN. PSO is then applied to train the real predicted output of training data from this trained network. As the result, the optimum value of decision boundary is found and applied to the classifier. Prediction performance is assessed by G-mean, which is a measure to indicate the efficiency of classifiers for imbalanced data sets. Based on experimental results, the proposed model is able to solve imbalanced data sets problem with better performance compared to the standard ANN.

Published in:

Computational Intelligence, Communication Systems and Networks (CICSyN), 2010 Second International Conference on

Date of Conference:

28-30 July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.