By Topic

ABAKA: An Anonymous Batch Authenticated and Key Agreement Scheme for Value-Added Services in Vehicular Ad Hoc Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiun-Long Huang ; Dept. of Comput. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Lo-Yao Yeh ; Hung-Yu Chien

In this paper, we introduce an anonymous batch authenticated and key agreement (ABAKA) scheme to authenticate multiple requests sent from different vehicles and establish different session keys for different vehicles at the same time. In vehicular ad hoc networks (VANETs), the speed of a vehicle is changed from 10 to 40 m/s (36-144 km/h); therefore, the need for efficient authentication is inevitable. Compared with the current key agreement scheme, ABAKA can efficiently authenticate multiple requests by one verification operation and negotiate a session key with each vehicle by one broadcast message. Elliptic curve cryptography is adopted to reduce the verification delay and transmission overhead. The security of ABAKA is based on the elliptic curve discrete logarithm problem, which is an unsolved NP-complete problem. To deal with the invalid request problem, which may cause the batch verification fail, a detection algorithm has been proposed. Moreover, we demonstrate the efficiency merits of ABAKA through performance evaluations in terms of verification delay, transmission overhead, and cost for rebatch verifications, respectively. Simulation results show that both the message delay and message loss rate of ABAKA are less than that of the existing elliptic curve digital signature algorithm (ECDSA)-based scheme.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 1 )