By Topic

Adaptive Control Strategy for VSC-Based Systems Under Unbalanced Network Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Leon, A.E. ; Dept. de Ing. Electr. y de Computadoras, Univ. Nac. del Sur (UNS), Bahia Blanca, Argentina ; Mauricio, J.M. ; Solsona, J.A. ; Gomez-Exposito, A.

A new adaptive control strategy, intended to improve the ride-through capability of high-voltage direct current (HVDC) systems under unbalanced network conditions and parameter uncertainties, is introduced. The proposed strategy resorts to a model reference adaptive control plus a resonant filter. The resonant filter scheme is based on a unique synchronous reference frame that prevents the use of the customary sequence component detector, increasing the controller bandwidth accordingly. Several tests are conducted to compare the proposed scheme against existing HVDC controllers, showing an improved performance regarding: 1) elimination of the 2ω ripple on the dc voltage arising during ac-side imbalances; 2) accurate and decoupled active and reactive power tracking when converter parameters are not perfectly known.

Published in:

Smart Grid, IEEE Transactions on  (Volume:1 ,  Issue: 3 )