By Topic

Apnea MedAssist: Real-time Sleep Apnea Monitor Using Single-Lead ECG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Majdi Bsoul ; Alcatel-Lucent, , Plano, USA ; Hlaing Minn ; Lakshman Tamil

We have developed a low-cost, real-time sleep apnea monitoring system ``Apnea MedAssist” for recognizing obstructive sleep apnea episodes with a high degree of accuracy for both home and clinical care applications. The fully automated system uses patient's single channel nocturnal ECG to extract feature sets, and uses the support vector classifier (SVC) to detect apnea episodes. “Apnea MedAssist” is implemented on Android operating system (OS) based smartphones, uses either the general adult subject-independent SVC model or subject-dependent SVC model, and achieves a classification F-measure of 90% and a sensitivity of 96% for the subject-independent SVC. The real-time capability comes from the use of 1-min segments of ECG epochs for feature extraction and classification. The reduced complexity of “Apnea MedAssist” comes from efficient optimization of the ECG processing, and use of techniques to reduce SVC model complexity by reducing the dimension of feature set from ECG and ECG-derived respiration signals and by reducing the number of support vectors.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:15 ,  Issue: 3 )