By Topic

Fast group sparse classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Majumdar, A. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Ward, R.K.

A recent work proposed a novel Group Sparse Classifier (GSC) that was based on the assumption that the training samples of a particular class approximately form a linear basis for any test sample belonging to that class. The Group Sparse Classifier requires solving an NP hard group-sparsity promoting optimization problem. Thus a convex relaxation of the optimization problem was proposed. The convex optimization problem, however, needs to be solved by quadratic programming and hence requires a large amount of computational time. To overcome this, we propose novel greedy (sub-optimal) algorithms for directly addressing the NP hard minimization problem. We call the classifiers based on these greedy group sparsity promoting algorithms as Fast Group Sparse Classifiers (FGSC). This work shows that the FGSC has nearly the same accuracy (at 95% confidence level) as the GSC, but with much faster computational speed (nearly two orders of magnitude). When certain conditions hold the GSC and the FGSC are robust to dimensionality reduction via random projection. By robust, we mean that the classification accuracy is approximately the same before and after random projection. The robustness of these classifi ers will be theoretically proved, and will be validated by thorough experimentation.

Published in:

Electrical and Computer Engineering, Canadian Journal of  (Volume:34 ,  Issue: 4 )