We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Achieving Fair or Differentiated Cache Sharing in Power-Constrained Chip Multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaorui Wang ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA ; Kai Ma ; Yefu Wang

Limiting the peak power consumption of chip multiprocessors (CMPs) has recently received a lot of attention. In order to enable chip-level power capping, the peak power consumption of on-chip L2 caches in a CMP often needs to be constrained by dynamically transitioning selected cache banks into low-power modes. However, dynamic cache resizing for power capping may cause undesired long cache access latencies, and even thread starving and thrashing, for the applications running on the CMP. In this paper, we propose a novel cache management strategy that can limit the peak power consumption of L2 caches and provide fairness guarantees, such that the cache access latencies of the application threads co-scheduled on the CMP are impacted more uniformly. Our strategy is also extended to provide differentiated cache latency guarantees that can help the OS to enforce the desired thread priorities at the architectural level and achieve desired rates of thread progress for co-scheduled applications. Our solution features a two-tier control architecture rigorously designed based on advanced feedback control theory for guaranteed control accuracy and system stability. Extensive experimental results demonstrate that our solution can achieve the desired cache power capping, fair or differentiated cache sharing, and power-performance tradeoffs for many applications.

Published in:

Parallel Processing (ICPP), 2010 39th International Conference on

Date of Conference:

13-16 Sept. 2010