By Topic

Ensemble Learning with Active Example Selection for Imbalanced Biomedical Data Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sangyoon Oh ; WISE Lab., Ajou Univ., Suwon, South Korea ; Min Su Lee ; Byoung-Tak Zhang

In biomedical data, the imbalanced data problem occurs frequently and causes poor prediction performance for minority classes. It is because the trained classifiers are mostly derived from the majority class. In this paper, we describe an ensemble learning method combined with active example selection to resolve the imbalanced data problem. Our method consists of three key components: 1) an active example selection algorithm to choose informative examples for training the classifier, 2) an ensemble learning method to combine variations of classifiers derived by active example selection, and 3) an incremental learning scheme to speed up the iterative training procedure for active example selection. We evaluate the method on six real-world imbalanced data sets in biomedical domains, showing that the proposed method outperforms both the random under sampling and the ensemble with under sampling methods. Compared to other approaches to solving the imbalanced data problem, our method excels by 0.03-0.15 points in AUC measure.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 2 )