By Topic

Industrial Fieldbus Improvements in Power Distribution and Conducted Noise Immunity With No Extra Costs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alberto Menendez ; Research Group IEA, Department of Electronic Technology, Polytechnic University School, University of Seville, Sevilla, Spain ; Antonio Barbancho ; Enrique Personal ; Diego Fco. Larios

Industrial distributed control continues the move toward networks at all levels. At lower levels, control networks provide flexibility, reliability, and low cost, although perhaps the simplest but most important advantage is the reduced volume of wiring. Powered fieldbuses offer particular notable benefits in system wiring simplification. Nevertheless, very few papers are dealing with the potentials and limitations in power distribution through the bus cable. Only a few of the existent fieldbus standards consider this possibility but often simply as an option without enough technical specifications. In fact, nobody talks about it, but power distribution through the bus and conducted noise disturbances are strongly related. This paper points out and analyzes these limitations and proposes a new low-cost fieldbus physical layer that enlarges power distribution capability of the bus and improves system robustness. We show an industrial application on water desalination plants and the very good results obtained owing to the fieldbus. Finally, we present electromagnetic compatibility test results that verify improvements against electrical fast transients on the sensor/actuator connection side as disturbances usually encountered in harsh-environment industrial applications.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:58 ,  Issue: 7 )