By Topic

Design of an adaptive interval type-2 fuzzy logic controller for the position control of a servo system with an intelligent sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kayacan, E. ; Dept. of Electr. & Electron. Eng., Bogazici Univ., Istanbul, Turkey ; Kaynak, O. ; Abiyev, R. ; Tørresen, J.
more authors

Type-2 fuzzy logic systems are proposed as an alternative solution in the literature when a system has a large amount of uncertainties and type-1 fuzzy systems come to the limits of their performances. In this study, an adaptive type-2 fuzzy-neuro system is designed for the position control of a servo system with an intelligent sensor. The sensor gives different resistance values with respect to the stretch of it, and it is supposed to be used in an robotic arm position measurement system. These kinds of sensors can be used in human-assistance robots that have soft surfaces in order not to damage the humans. However, these sensors have time-varying gains and uncertainties that are not very easy to handle. Moreover, they generally have a hysteresis on their input-output relations. The simulation results show that the control algorithm developed gives better performances when compared to conventional type-1 fuzzy controllers on such a highly nonlinear, uncertain system.

Published in:

Fuzzy Systems (FUZZ), 2010 IEEE International Conference on

Date of Conference:

18-23 July 2010