By Topic

HAIRIS: A Method for Automatic Image Registration Through Histogram-Based Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hernâni Goncalves ; Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Porto, Portugal ; José Alberto Goncalves ; Luís Corte-Real

Automatic image registration is still an actual challenge in several fields. Although several methods for automatic image registration have been proposed in the last few years, it is still far from a broad use in several applications, such as in remote sensing. In this paper, a method for automatic image registration through histogram-based image segmentation (HAIRIS) is proposed. This new approach mainly consists in combining several segmentations of the pair of images to be registered, according to a relaxation parameter on the histogram modes delineation (which itself is a new approach), followed by a consistent characterization of the extracted objects-through the objects area, ratio between the axis of the adjust ellipse, perimeter and fractal dimension-and a robust statistical based procedure for objects matching. The application of the proposed methodology is illustrated to simulated rotation and translation. The first dataset consists in a photograph and a rotated and shifted version of the same photograph, with different levels of added noise. It was also applied to a pair of satellite images with different spectral content and simulated translation, and to real remote sensing examples comprising different viewing angles, different acquisition dates and different sensors. An accuracy below 1° for rotation and at the subpixel level for translation were obtained, for the most part of the considered situations. HAIRIS allows for the registration of pairs of images (multitemporal and multisensor) with differences in rotation and translation, with small differences in the spectral content, leading to a subpixel accuracy.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 3 )